康耐德智能

 康耐德智能,点胶AOI系统专家!

 服务热线:0769-28680919  手机:15322933971

图片展示
搜索

更多资讯

分类标题

关注康耐德智能

        

电话:0769-28680919

传真:0769-28680910

邮箱:csray@csray.com

地址:东莞市南城区天安数码城C2栋507室


傅里叶变换在图像处理中的应用

作者:康耐德智能 浏览:103 发表时间:2020-09-29 08:31:30 来源:网络资源

1.背景

法国数学家吉恩·巴普提斯特·约瑟夫·傅里叶被世人铭记的的贡献是:他指出任何周期函数都可以表示为不同频率的正弦和/或余弦之和的形式,每个正弦项和/或余弦项乘以不同的系数(现在称该和为傅里叶级数)。无论函数多么复杂,只要它是周期的,并且满足某些适度的数学条件,都可以用这样的和来表示。即一个复杂的函数可以表示为简单的正弦和余弦之和。甚至非周期函数(单该曲线下的面积是有限的)也可以用正弦和/或许·余弦乘以加权函数的积分来表示。在这种情况下的公式就是傅里叶变换

傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。这里主要从多篇文章中总结一下傅里叶变换和在图像中的应用。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。一开始傅立叶分析是作为热过程的解析分析的工具被提出的。傅里叶变换是一种分析信号的方法,它可分析信号的成分,也可用这些成分合成信号。许多波形可作为信号的成分,比如正弦波、方波、锯齿波等,傅里叶变换用正弦波作为信号的成分。


傅里叶变换的实质是将一个信号分离为无穷多多正弦/复指数信号的加成,也就是说,把信号变成正弦信号相加的形式——既然是无穷多个信号相加,那对于非周期信号来说,每个信号的加权应该都是零——但有密度上的差别,你可以对比概率论中的概率密度来思考一下——落到每一个点的概率都是无限小,但这些无限小是有差别的所以,傅里叶变换之后,横坐标即为分离出的正弦信号的频率,纵坐标对应的是加权密度。有点晕


那么傅里叶变换有什么用呢?

例如:傅里叶变换可以将一个时域信号转换成在不同频率下对应的振幅及相位,其频谱就是时域信号在频域下的表现,而反傅里叶变换可以将频谱再转换回时域的信号。简单直接的应用就是时频域转换,比如在移动通信的LTE系统中,要把接收的信号从时域变成频域,就需要使用FFT。又例如对一个采集到的声音做傅立叶变化就能分出好几个频率的信号。比如南非世界杯时,南非人吹的呜呜主拉的声音太吵了,那么对现场的音频做傅立叶变化(当然是对声音的数据做),会得到一个展开式,然后找出呜呜主拉的特征频率,去掉展开式中的那个频率的sin函数,再还原数据,就得到了没有呜呜主拉的嗡嗡声的现场声音。而对图片的数据做傅立叶,然后增大高频信号的系数就可以提高图像的对比度。同样,相机自动对焦就是通过找图像的高频分量很大的时候,就是对好了。

2.基本概念

2.1复数

复数CC的定义如下:

C=R+jIC=R+jI

其中,RR 和 II 是实数,jj 是一个等于-1平方根的虚数,即 j=−1−−−√j=−1RR 表示复数的实部,II 是复数的虚部。


在极坐标下表示为:

C=|C|(cosθ+jsinθ)C=|C|(cos⁡θ+jsin⁡θ)

其中,|C|=R2+I2−−−−−−−√|C|=R2+I2是复平面的原点到点(R,I)(R,I)的向量的长度,θθ是该向量与实轴的夹角。

使用欧拉公式

ejθ=cosθ+jsinθejθ=cos⁡θ+jsin⁡θ

其中 e=2.71828e=2.71828···,可给出极坐标下我们很熟悉的如下复数表示:

C=|C|ejθC=|C|ejθ

2.2傅里叶级数

由上面的背景可知,具有周期 的连续变量 的周期函数 f(t)f(t) 可以被描述为乘以适当系数的正弦和余弦和,这个和就是傅里叶级数。它具有如下形式:

f(t)=∑n=−∞∞cnej2πnTtf(t)=∑n=−∞∞cnej2πnTt

2.3时域与频域

(1)频域(frequency domain)是指在对函数或信号进行分析时,分析其和频率有关部份,而不是和时间有关的部分,和时域一词相对。


(2)时域是描述数学函数或物理信号对时间的关系。

例如一个信号的时域波形可以表达信号随着时间的变化。

若考虑离散时间,时域中的函数或信号,在各个离散时间点的数值均为已知。

若考虑连续时间,则函数或信号在任意时间的数值均为已知。在研究时域的信号时,常会用示波器将信号转换为其时域的波形。


(3)两者相互间的变换

时域(信号对时间的函数)和频域(信号对频率的函数)的变换在数学上是通过积分变换实现。对周期信号可以直接使用傅立叶变换,对非周期信号则要进行周期扩展,使用拉普拉斯变换。

3.一维傅里叶变换

一个信号能表示成傅里叶级数的形式是有条件的,它必须是周期信号,第二必须是满足狄里赫利条件的周期信号。

4.快速傅里叶变换(FFT)

计算离散傅里叶变换的一种快速算法,简称FFT。函数或信号可以透过一对数学的运算子在时域及频域之间转换。快速傅里叶变换是1965年由J.W.库利和T.W.图基提出的。采用这种算法能使计算机计算离散傅里叶变换所需要的乘法次数大为减少,特别是被变换的抽样点数N越多,FFT算法计算量的节省就越显著。

人们想让计算机能处理信号,但由于信号都是连续的、无限的,计算机不能处理,于是就有了傅里叶级数、傅里叶变换,将信号由时域变到频域,把一个信号变为有很多个不同频率不同幅度的正弦信号组成,这样计算机就能处理了,但又由于傅里叶变换中要用到卷积计算,计算量很大,计算机也算不过来,于是就有了快速傅里叶变换,大大降低了运算量,使得让计算机处理信号成为可能。快速傅里叶变换是傅里叶变换的快速算法而已,主要是能减少运算量和存储开销,对于硬件实现特别有利。

5.图像中傅里叶变换的意义

(1)图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设 f 是一个能量有限的模拟信号,则其傅立叶变换就表示 f 的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。

(2)傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示空间上各点,则图像可由 z=f(x,y)z=f(x,y) 来表示。由于空间是三维的,图像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立叶变换后的频谱图,也叫功率图,我们可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因为各点与邻域差异都不大,梯度相对较小),反之,如果频谱图中亮的点数多,那么实际图像一定是尖锐的,边界分明且边界两边像素差异较大的。对频谱移频到原点以后,可以看出图像的频率分布是以原点为圆心,对称分布的。将频谱移频到圆心除了可以清晰地看出图像频率分布以外,还有一个好处,它可以分离出有周期性规律的干扰信号,比如正弦干扰,一副带有正弦干扰,移频到原点的频谱图上可以看出除了中心以外还存在以某一点为中心,对称分布的亮点集合,这个集合就是干扰噪音产生的,这时可以很直观的通过在该位置放置带阻滤波器消除干扰。

广东省东莞市南城区黄金路1号天安数码城C2-507

电话:0769-28680919

手机:15322933971

邮箱:csray@csray.com

版权所有:东莞康耐德智能控制有限公司

粤ICP备18080826号-1

在线客服
联系方式
热线电话
0769-28680919
手机服务
15322933971
上班时间
周一到周五
二维码
二维码
在线客服